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NOTE:

This slide deck is a slightly modified version of the talk 
slide deck, whereby:

(1) The order of the sections has been changed by 
moving the “Best 1-D Robust Outlier Methods” first 
section to the last section and renaming it “Robust 
Location Estimates Applications”

(2) A few slides have been added and a few have 
been deleted 
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Main Reference is Chapter 5 of:
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Robust Statistics: Theory and Methods (2019). 2nd Ed. 
Maronna, Martin, Yohai & Salibian-Barrera, Wiley. (MMYS) 

 Companion R package:  RobStatTM (2019, beta)

Maintainer: Matias Salibian-Barrera

To install from CRAN load, and view functions and data sets:

https://cran.r-project.org/package=RobStatTM

To load, and view functions and data sets:

> library(RobStatTM)
> ls("package:RobStatTM")
> data(package = "RobStatTM") 

https://cran.r-project.org/package=RobStatTM
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1. Robust Regression Overview

 Not much influenced by outliers
 A good fit to the bulk of the data
 Reliable multi-D outlier detection

Provides a diagnostic check on classical estimates

6

Data Oriented Viewpoint

 Tukey (1979)
“… It is perfectly proper to use both classical and robust methods 
routinely, and only worry when they differ enough to matter.  But 
when they differ, you should think hard.”



Least Squares (LS)
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 Returns often have non-normal distributions and outliers

 Linearity is not at all enough to cope with outliers

 Outliers in     and/or      can have arbitrarily large influence on  
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ir ix

 Maximum-likelihood estimator (MLE) for normally distributed
 Best linear unbiased estimator (BLUE)   (so what?)

LS is Totally Lacking in Robustness Toward Outliers
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The LEAST SQUARES 
line is a poor fit to the 
bulk of the data, and 
is a very poor 
predictor of EPS  

The ROBUST line is 
a better fit to bulk of 
the data, and better 
exposes outliers in 
residuals!

Robust vs. Least Squares Fits for EPS
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Regression M-Estimators

“M” = maximum-likelihood type: Huber (1964, 1973)

“MM-estimators”:  M-estimators with a highly robust initial 
estimator – crucial for non-convex     , Yohai (1987).  ρ



Robustness Goals for Choice of     and 

 Estimator variance is only very slightly larger than 
that of LS in the case of normal distributions (high 
normal distribution “efficiency”)

 The maximum estimator bias due to outliers is 
minimized
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Two Key Simultaneous Goals

  ρ ψ

See Appendix for sketch of the theory and references 
to detailed theory in MMYS (2019).
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Huber Optimal      and      

N.B.  Axioma uses this robust regression estimator, see., e.g., Axioma paper 
062 (2015),  and Axioma AXWWW21-1 (2015). 

  ρ ψ

Good news:  It is a convex 
optimization problem, and 
minimizes maximum variance

Bad news:  It can result in  
arbitrarily large bias for the 
Tukey-Huber model (Martin, 
Yohai & Zamar, 1989).

None-the-less, is better than not 
using any robust regression method
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A non-convex optimization 
problem.  But a very reliable 
MM-estimator algorithm exists 
for finding global minimum.

See MMYS (2019) for details, 
Section 5.8.1 for formula for 
psi function.

i
ˆ| |  3.568  

ˆ
i

o

r
s

′−
>

x θ

Yohai-Zamar-Svarc Optimal     and       ρ ψ

99% normal distribution 
efficiency version, with 
smooth outlier rejection,
rejects outliers for which:
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Weighted Least Squares Version of Estimator
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Uses a very robust initial 
estimate, and solves by 
iterative re-weighting.



Example 1: Single-Index Model for VHI
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Code for the above plot, and the plots on the next two slides, is 
provided in the Appendix.
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 LS beta is almost twice the robust beta

 Robust beta standard error is smaller than that of LS beta
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Important fact: “good” outliers are not rejected

Example 2: Single-Index Model for VHI



For an overview of empirical asset pricing, including brief 
discussion of research on many pricing anomalies, see:

Bali, Engle and Murray (2016).  Empirical Asset Pricing: The 
Cross-Section of Stock Returns, Wiley

2. Fama French 1992 Results
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Eugene F. Fama and Kenneth R. French (1992).  “The Cross-
Section of Expected Stock Returns”, Journal of Finance.



Cross-Section Regression Models

1, 2, ,1            ,   Tt t t t t− == +r X θ ε 

Factor exposures Regression slopes

t-Tests of Significance

Least Squares (LS) Fitted Models
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Sample mean of time-series of slopes ,
ˆ 1, 2, ,,   k t Ttθ = 
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Determine which of the factors below explain the cross-section of 
expected returns (which factors “price risk”)

CAPM beta  (special portfolios to reduce EV)
Size      (ME is market equity in $M)
Book-to-Market (often just B/M)
Positive Earnings to Price
Negative Earnings to Price Dummy
Leverage factors (A = book assets)

ln(ME)
ln(BE/ME)
E(+)/P
E/P Dummy
ln(A/ME), ln(A/BE)

β

Fama-French 1992 Goal
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Fama-French (1992)  Table III   - 1963-1990
Ignore 

beta does not price risk !
returns are negatively related to size

returns are positively related to BE/ME

strange
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For the vast majority of the stocks (~ 97-99%) we found:

3. FF92 Redux with Robust Regression

 Different conclusions with robust regression than FF92:

- Equity returns are positively related to firm size
- Beta relationship is significant and negative

 New results for two models not in FF92:
- E/P prices risk 
- Beta and size interaction term

21

*Joint work with Christopher G. Green.  See Green and Martin (2017),
SSRN Abstract ID 2963855.



Nov. 1998 Returns vs Size LS & Robust Fits
Full vertical range view
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Same data after .1% vertical trimming for a better view



KR97 = Knez & Ready (1997)
CCW04 = Chou, Chou & Wang (2004) LTS = least trimmed squares

Returns vs Size
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Mean % Outliers Rejected = 1.54%  (= median in this case)

huge t-stats



red dots illustrate a well-known January size effect

N.B. Existence of outliers and serial correlation, thus one should use a 
robust location estimator with HAC:  Croux et al. (2003).

Monthly Slopes of Returns Regressed on Size
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Monthly Analysis of Returns vs Size

rejection regions with and without multiple comparisons adjustment

well-known   
January effect

A not-so-well-known
Q4 effect ??
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Advice for Evaluating Factor Premia
Tom Philips:
“Attempt to replicate the returns of a factor using publicly available indices,
preferably ones that discard the bottom 5%-10% of the market’s total capital.
Such a replication allows the investigator to determine if a strategy is
tradeable, and also real-time permits performance monitoring.”



Returns vs Beta
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highly significant t-stats



Slopes of Returns Regressed on Beta

Monthly time series red dots = Januaries
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Monthly Analysis of Returns vs Beta

Beta January effect
30

rejection regions with and without multiple comparisons adjustment



Returns vs Earnings-to-Price

“uncorrected”  =  not corrected with Newey-West (should be done for classic t-test)

“Croux et al.”  =  Croux et al. (2003) standard error serial autocorrelation correction (AC)

N.B.  Typically using a robust mean estimator of time series of slopes, and corresponding 
robust t-test will improve the power of the test, even without AC
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4. Two Models Not Studied in FF92



Slopes of Returns Regressed on E/P
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3.63  3.54   .4 SIZE  .51 SIZE  returns noiseβ β= − × − × + × × +

Size-Beta Interaction Model
With LS the only significant coefficient is interaction for 2 time periods, but 
Robust Regression coefficients are all highly significant for all 3 time periods.

SIZE = ln(ME):  (5, 6, 7, 8)  = ($148M, $403M, $1.1B, $3.0B)
33
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5. Fundamental Factor Models Use
 Axioma has responded to the need for robust regression in 

fundamental factor models by using Huber M-estimator

 Outliers abound in returns and in factor exposures, more so in 
the latter than one may think

 Price paid for using LS is more volatile factor returns and cross-
section correlation in residuals.  The former can result in over-
stating the factor contribution to risks.

The following two slides illustrate the last point.
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Robust versus Classical Factor Returns
Three factors:  size, E/P, B/M, monthly returns
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LS results in positive average of residuals cross-correlations, 
which does not happen with robust regression



6. Robust Location Estimator Apps
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 Special case of robust regression with intercept only

 Robust deciles analysis of expected returns to factors

 Outlier cleaning for risk & performance estimation
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Very easy to solve!  See Section 2.8.1 of MMYS.

The R function in RobStatTM:     locScaleM()



39

with 99% Normal Distribution Efficiencyψ

Rejects data for which:

Formula for psi function
in MMYS Section 5.8.1

Smooth outlier rejection:
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ˆ

r
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>

Virtues of this Location Estimator

- Fraction of outliers trimmed is data adaptive
- Can reject outliers asymmetrically, e.g., if more positive
outliers than negative outliers (and conversely)



Robust Expected Returns Factor Deciles Analysis
Reverses the common wisdom that “Returns decrease with firm size”

from time series of 
decile portfolios

The opposite is true with robust 
location M-estimator portfolio 
weights that rejects outliers
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Trimming will Not Suffice !
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Limitations of Trimming and Winsorizing

 No data driven way of choosing trimming fraction

 Rigidly symmetric outlier treatment



Risk & Performance Estimator Outlier Cleaning 

43

You need to compute risk and performance estimators 
for the following hedge funds returns with outliers.
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Application to the FIA Hedge Fund Returns
Automatic outlier detection and shrinkage
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ES ES CL seCorIF seCorIF CL SR SR CL seCorIFAdapt seCorIFAdapt CL
FIA -0.042 -0.013 0.025 0.002 0.299 0.761 0.185 0.148

CTAG -0.045 -0.045 0.004 0.004 0.258 0.258 0.08 0.08

Outlier Impact on ES and SR Estimators

seCorIF and seCorIFAdapt are new estimator standard error 
computational method that is accurate when returns are serially 
correlated as well as uncorrelated.

Chen and Martin (2019). “Standard Errors of Risk and Performance Estimators 
with Serially Correlated Returns”, https://ssrn.com/abstract=3085672.



7. Take-Aways and Open Questions

Take-Aways

 Empirical asset pricing studies can benefit considerably by using 
robust regression (and other robust methods) as a complement to LS

 Fundamental factor model construction for portfolio optimization and 
risk management could similarly benefit.

Open Questions

 Connection with low-vol anomaly (Blitz & van Vliet, 20017, Baker et al., 2011)

 Outliers and Asness et al. (2015) “Quality-Junk” factor?
 Life-time and other properties of positive outliers?
 What is the full story about the negative beta relationship?
 Financial implications of the size-beta interaction model?
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Appendix
Robust Regression Theory 

any joint distributionmultivariate normal distribution

When          :   High efficiency ( ) ( )
( )

ˆvar
ˆEFF 99%

ˆvar
LS

ROB
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θ
θ = =

θ
0γ =

When                 :0 1/ 2γ< <

Tukey-Huber model for regression

ˆ
ROBθ

Minimize maximum bias of             over all ˆ
ROBθ

MMYS (2019) Chap. 5
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 First result (Huber, 1964, 1973)

– M-estimators that minimize maximum variance subject to 
symmetric distributions constraint

– Lacks bias robustness (can have arbitrarily large bias)

 Important result  
Yohai & Zamar, 1997; Svarc, Yohai & Zamar (2002); MMYS Chap. 5.8.1

– MM-estimator with high normal distribution efficiency and min-
max bias over Tukey-Huber model. 

Main Large Sample Theory Results

 Even better result (Maronna & Yohai, 2015 ; Ch 5.9.3 MMYS)

– Fully efficient DCML estimator
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Example 1 R Code

library(devtools) # Needed to install PCRM
install_github("kecoli/PCRM") # Install PCRM
library(PCRM)  # Load PCRM
(names(retVHI))
ret12 = retVHI[,1:2]
tsPlot(ret12,cex = .8)

library(RobStatTM)  # Must first install from CRAN
x=(retVHI[,2]-retVHI [,3])*100
y=(retVHI[,1]-retVHI [,3])*100
fit.ls = lm(y~x)
ctrl = lmrobdet.control(efficiency = 0.99,family = 
"optimal")
fit.rob = lmrobdetMM(y~x,control = ctrl)
coef(fit.ls)
coef(fit.rob)
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plotLSandRobustVHI = function(x)
{
ret = x
x=(ret[,2]-ret[,3])*100
y=(ret[,1]-ret[,3])*100
fit.ls = lm(y~x)
fit.rob = lmrobdetMM(y~x, control=

lmrobdet.control(efficiency=0.99,family="optimal"))
plot(x,y, pch=20, xlab="Market Returns %",ylab="VHI Returns (%)",

type="n",main="")
abline(fit.rob, col="black", lty=1, lwd=2)
abline(fit.ls, col="red", lty=2, lwd=2)
abline(fit.rob$coef[1]+3*1.29*fit.rob$scale,fit.rob$coef[2],lty=3,col="black")
abline(fit.rob$coef[1]-3*1.29*fit.rob$scale,fit.rob$coef[2],lty=3,col="black")
ids=which(fit.rob$rweights==0)
points(x[-ids], y[-ids], pch=20)
points(x[ids], y[ids], pch=1)
legend("topleft",

legend=c(expression("Robust " ~ hat(beta)==0.63~(0.23)), 
expression("       LS " ~ hat(beta)==1.16~(0.31))),

lty=1:2, col=c("black", "red"), bty="n", lwd=c(2,2), cex=1.2)
}
plotLSandRobustVHI(retVHI)
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Example 2 R Code
plotLSandRobustDD = function(x)
{
ret = x
x=(ret[,2]-ret[,3])*100
y=(ret[,1]-ret[,3])*100
fit.ls = lm(y~x)
fit.rob = lmrobdetMM(y~x, control=

lmrobdet.control(efficiency=0.99,family="optimal"))
plot(x,y, pch=20, xlab="Market Returns (%)", ylab="DD Returns (%)", type="n")
abline(fit.rob, col="black", lty=1, lwd=2)
abline(fit.ls, col="red", lty=2, lwd=2)
abline(fit.rob$coef[1]+3*1.29*fit.rob$scale,fit.rob$coef[2],lty=3,col="black")
abline(fit.rob$coef[1]-3*1.29*fit.rob$scale,fit.rob$coef[2],lty=3,col="black")
points(x, y, pch=20)
legend("topleft",

legend=c(expression("Robust " ~ hat(beta)==1.21 ~ (0.128)), 
expression("      LS " ~ hat(beta)==1.19 ~ (0.076))),

lty=1:2, col=c("black", "red"), bty="n", cex=1.2 )
id = which(retDD <=-0.24)
arrows(x[id]+1, y[id]+11, x[id]+0.1, y[id]+1, angle=15, length=0.1)
text(x[id]+1, y[id]+12.5, labels="Oct. 20 1987", cex=0.9)

}
plotLSandRobustDD(retDD))
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