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Outline – Ideas Old and New
A utility function evaluates portfolios [1952]

Inputs are inferred, inexact, uncertain [< 1980]

So, utility is uncertain [< 1980]

Explicitly estimate the uncertainty of the 
ingredients. e.g. mean and covariance via 
Bayesian estimation [old & new]

Smart parameterization yields mean and std
dev of utility without simulation [new]
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Outline (cont)
Can calculate E[Utility] and stdev[Utility] 
quickly for any arbitrary portfolio

Maximize E[Utility] - γ × stdev[Utility] to 
construct more reliable portfolios

For discussion: This works practically, but how 
to determine a particular investor’s 
uncertainty aversion? Appears tied to 
rebalance frequency, turnover, taxes, … 0
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Which do you prefer?



(UPO) Uncertainty-Penalized Optimization
Compared to Other Approaches
vs Michaud resampling (perturb input, average output)

◦ UPO uses explicit estimates of uncertainty – e.g. MSFT’s beta is 1.1 ± 0.3, company Y’s is 1.1 ± 0.9
◦ Resampling – perturbing a point estimate – doesn’t distinguish between the well and poorly predicted

◦ UPO works with constraints and trading costs; resampling doesn’t

vs robust optimization (best worst case given a range on the inputs)
◦ UPO operates on complicated utility functions – multiple benchmarks, market impact costs, …

◦ Robust optimization’s max-min optimization requires particular structures

◦ UPO doesn’t guarantee finding a global max; robust optimization does
◦ Question in general: What’s better – a richer model or a simplified model that has a guaranteed optimal solution?

◦ UPO rolls uncertainty up to the utility level
◦ Can balance uncertainty and expected utility for different investor preferences. Unclear how to do so in robust optimization
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Machinery
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Getting Std Dev of Portfolio Utility
Utility is the sum of terms

◦ e.g. alpha, trading costs, tracking variances vs assorted benchmarks, …

◦ U(w) = ∑k ak gk(w)

Its variance is the sum of terms’ variances and covariances

◦ var[U] = ∑k ak
2 var[gk] + 2 ∑j<k aj ak cov[gj, gk]

Assume what’s not modeled is 0
◦ e.g. var[U] ≈ ∑k ak

2 var[gk]  ignoring covariance between terms

◦ If you know and care about something, model it
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Utility Terms:
Uncertain Alpha
Conventional optimization takes an alpha vector

Uncertainty adds a covariance matrix
◦ Represents diversity of bets driving alpha

Conceptual fussiness vs robust optimization
◦ The robust optimization literature sometimes uses an estimate surrounded by an elliptical confidence 

region, a frequentist idea

◦ Here the estimate and dispersion are Bayesian, “the expected value and covariance of alpha as I see it”

◦ In practice, I doubt any difference – both estimated Bayesian
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Utility Terms:
Uncertain Tracking Variance
Rather than being fixed, the parts of a covariance model have estimates of mean and variance

◦ Exposures, stock-specific variances, factor variances

Mathematical details
◦ Shah (2015) Uncertain Covariance Models, http://ssrn.com/abstract=2616109

Every conventional model (more or less) can be rebuilt in its uncertain analog
◦ Tell your vendor you want one

◦ A note: computation is done in an orthogonal representation, which for reports, is projected back to the 
original representation
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A Conventional Factor Covariance Model
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model of how securities move –
jointly (winds and sails) and 
independently (motors)
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An Uncertain Factor Covariance Model



Uncertain Exposures
Beliefs about future exposure to the factors are communicated as their mean and covariance

◦  𝒆𝐺𝑂𝑂𝐺 = 𝑬 𝒆𝐺𝑂𝑂𝐺  𝛀𝐺𝑂𝑂𝐺 = 𝐶𝑜𝑣 𝒆𝐺𝑂𝑂𝐺
◦ Exposures can be correlated across securities

◦ Many ways to infer – Bayesian regression, Kalman filter, …

A portfolio’s exposures are assumed Gaussian
◦ Needed for mathematical derivation of (uncertainty) variance of portfolio variance
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Uncertain Factor Variances
Beliefs about the future factor variances are communicated as their mean and covariance

◦ Forecasts are the mean and covariance – according to uncertainty – of return variances

◦ Not Gaussian since variances ≥ 0

How the heck do you generate these?

Shah (2014) Short-Term Risk and Adapting Covariance Models to Current Market Conditions
◦ http://ssrn.com/abstract=2501071

1. Forecast whatever you can, e.g. from VIX and cross-sectional returns, the volatility of S&P 500 daily 
returns over the next 3 months will be 25% ± 5% annualized

2. The states of quantities measured by the risk model imply a configuration of factor variances

Since this inferred distribution of factor variances arises from predictions, it is a forecast
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Modeling the Future by
Adapting to Forecasts
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1. Noisy variance forecasts via all manner 
of Information sources
Implied vol, intraday price movement, news 
and other big data, …

2. Imply a distribution on how the world is

3. This extends to the behavior of other securities
All risk forecasts are improved
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Utility Terms:
Trading Costs & Others Terms
Optimization is done by a general purpose nonlinear optimization library

◦ Terms not restricted to a particular structure

For each term, need only
◦ Its E[ ] and var[ ] continuous and differentiable

◦ code that returns value and gradient of E[ ]

◦ code that returns value and gradient of var[ ]

Works with most market impact models
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Optimization: Calculating Objective
O(w) = E[U(w)] - γ stdev[U(w)] the uncertainty-penalized utility objective

To compute the objective and its gradient:

Recall utility is the sum of terms
◦ E[U] = ∑k ak E[gk]

◦ var[U] = ∑k ak
2 var[gk]   (assuming not modeled between-term covariance is 0)

So, gradients are
◦ ∂/∂w E[U] = ∑k ak ∂/∂w E[gk]

◦ ∂/∂w var[U] = ∑k ak
2 ∂/∂w var[gk]

◦ ∂/∂w stdev[U] = ∂/∂w var[U] / [2 sqrt(var[U])]   (by chain rule)

◦ ∂/∂w O = ∂/∂w E[U] - γ ∂/∂w stdev[U]

INVESTMENT GRADE MODELING, LLC INVESTMENTGRADEMODELING.COM



Optimization Algorithm
Maximizing a non-concave objective, so local max need not be a global max

First solve a QP that globally resembles the structure
◦ Solution serves as initial guess for the harder optimization and verifies constraints’ feasibility

To nonlinear optimization library, pass functions that calculate
◦ value and gradient of objective

◦ value and jacobian of constraints (each constraint is written as g[w] <= 0 or g[w]=0)

Easy to swap out engine and take advantage of new optimization technology
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Uncertain
Portfolio Optimizer
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IGM Uncertain Optimizer in R
XML or list input
Define data sources
...
<datasource>
<name>proxy</name>
<type>csv</type>
<filename>proxy.csv</filename>

</datasource>
<datasource>
...

Optimization inputs
...
<utilityterms>                     <!-- can have multiple entries of any type of utility term -->
<stdevpenalty>1</stdevpenalty>   <!-- penalty on uncertainty of utility, will maximize E[U] - penalty x stdev[U] -->
<term>
<type>variance</type>          <!-- relative variance vs a benchmark -->
<scalar>-0.5</scalar>
<model>cov_daily</model>       <!-- name of a covariance datasource -->
<benchmark>bench2</benchmark>  <!-- empty or name of benchmark defined above -->
<unmatchedproxy>               <!-- proxy for securities not covered by model. Can have multiple unmatched proxy records -->
<value>proxy$proxy1</value>  <!-- field containing security id -->
<type>TICKER</type>          <!-- type of security id -->

</unmatchedproxy>
</term>
...
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proxy.csv

bbgid ticker name proxy1 proxy2

BBG000B9WH86 AA ALCOA INC RIO BBG000B9XRY4

BBG000B9XRY4 AAPL APPLE INC MSFT BBG000BPH459

…



> library(IGMOptimizer)
Read datasources and map by id
ds <- IGMreadDataSources(file="dsmap.xml")

Read optimization settings and create data structures
optdat <- IGMparseOptXML(file="optsettings.xml", ds)

Maximize globally similar QP for initial guess and to verify feasibility of constraints
w0 <- IGMoptimizeQPApproximation(dat, upenalty)

Maximize true objective
opt <- IGMoptimizePortfolio(w0, optdat, upenalty)
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Investment Grade Modeling LLC
High-tech boutique modeling, in particular, for situations where accuracy has a premium

◦ Leverage

◦ Firm managing its own capital

Risk models are based on original research
◦ Shah, Anish (2014) Short-Term Risk and Adapting Covariance Models to Current Market Conditions

◦ Shah, Anish (2015) Uncertain Covariance Models

Patent pending uncertain utility optimization
◦ Maximizes uncertainty-penalized utility. Avoids being burned by bad numbers

◦ R library
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