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Motivation and Overview



Multi-Asset Factor Covariance Matrices

Portfolios may have exposure to multiple asset classes
Each asset class is composed of multiple local markets
Each local market is explained by many local factors

To obtain accurate risk forecasts for any portfolio requires
a covariance matrix that combines all of the local factors
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The “Curse of Dimensionality”

Forecasting accuracy requires a detailed factor structure
spanning all markets and asset classes

= Bloomberg MAC covariance matrix contains nearly 2000 factors

Portfolio construction demands a robust covariance matrix

= Risk model should not identify spurious hedges that fail out-of-sample

With fewer observations than factors (T<K), sample covariance
matrix contains one or more “zero eigenvalues”
= Leads to spurious prediction of “riskless” portfolios

This feature makes the sample covariance matrix unsuitable
for portfolio construction

Special methods are required to simultaneously provide:
1. Accurate volatility forecasts (risk management)
2. Robust risk models (portfolio construction)

Bloomberg



Case Study: The Perils of Non-Robust Models

Take the largest 100 US equities as of 16-Sept-2015, with
complete return history to 13-Jan-1999

Estimate family of asset covariance matrices using EWMA with
a variable half-life

Each week, construct the minimum-volatility fully invested

40
Bias statistic represents K

ratio of realized risk to
forecast risk
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Risk forecasts become
increasingly poor as the
half-life is shortened
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Out-of-Sample Volatility

= Mean-variance optimization produces a portfolio with the
minimum ex ante volatility for a given level of factor exposure

= |f all stocks have the same expected return, the minimum
volatility fully invested portfolio has the maximum Sharpe ratio

" Realized volatility Volatility
increases as half-life
parameter shortens:

= Equal-weighted portfolio
had realized volatility of
16.5 percent
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= For HL<25w, optimization
actually led to increased
portfolio volatility

Realized Volatility (%)
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Leverage and Turnover

= Portfolio leverage increased sharply with shorter half-life
= Half-life of 10 weeks produced a leverage of 10
= Resulting portfolio is 550% long and 450% short

= Turnover rises dramatically with shorter half-life

= 10-week half life produced more than 200% weekly turnover

Leverage Turnover
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Candidate Models
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Separating Volatilities and Correlations

Divide the task of constructing a factor covariance matrix into
two parts:

= Estimate the factor volatilities

= Estimate the factor correlation matrix

Factor volatilities are typically estimated using a relatively
short half-life parameter (i.e., responsive forecasts)

Factor correlations typically use longer half-life parameters
= Reduces noise in the correlation matrix
= Produces accurate risk forecasts

The factor covariance matrix is easily reconstructed:
ij = PO 0k

Present study focuses on comparing the model quality of
correlation matrices for the equity block
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Sample Correlation Matrix

= Sample correlation matrix possesses many attractive properties:
= Provides arguably the best estimate for any pairwise correlation

= Best Linear Unbiased Estimate (BLUE) under standard econometric assumptions

= Gives intuitive and transparent estimates, since it is based on the
“textbook” definition of correlation coefficient

= Produces accurate risk forecasts for most portfolios (with the notable
exception of optimized portfolios)

= Sample correlation matrix also possesses an “Achilles heel”:

= |f there are K factors and T periods, then sample correlation matrix
contains zero eigenvalues (i.e., rank-deficient matrix) whenever T<K

= Rank-deficient matrices predict the existence of “phantom” riskless
portfolios that do not exist in reality

= Sample correlation is not robust for portfolio construction

Objectives: (a) correlation estimates should closely mimic the sample,
and (b) provide robust forecasts for portfolio construction purposes

11
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Other Techniques for Estimating Correlations

Principal Component Analysis (PCA)
= Statistical technique to extract global factors from the data

= Assume a small number of global factors (principal components) fully
capture correlations of local factors (i.e., uncorrelated residuals)

Random Matrix Theory (RMT)

= Statistical technique similar to PCA (factors extracted from data)

= Eigenvalues beyond a cutoff point are simply averaged
Time-series Approach

= Specify “global” factor returns to explain “local” factor correlations

= Estimate the exposures by time-series regression
Eigen-adjustment Method

= Eigenvalues of sample correlation matrix are systematically biased
= Adjust the eigenvalues to remove biases

Menchero, Wang, and Orr. Improving Risk Forecasts for Optimized Portfolios,
Financial Analysts Journal, May/June 2012, pp. 40-50
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Blended Correlation Matrices

Ledoit and Wolf (2003) showed that blending the sample
covariance matrix with a one-factor model yielded optimized
fully invested portfolios with lower out-of-sample volatility

Blend sample correlation (using weight w) with PCA correlation
using J principal components derived from K local factors

Specify number of PCA factors by parameter 1, where J=uK
Two-parameter model for correlation matrix:

Cy (s, w)=wC,+(1-w)C,(u) | Blended Matrix

Optimal blending parameters are determined empirically
Technique represents the new Bloomberg methodology

Ledoit and Wolf. Improved Estimation of the Covariance matrix of Stock Returns,
Journal of Empirical Finance, December 2003, pp. 603-621
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Adjusted Correlation Matrices

= Local models provide our “best” estimates of the correlation
matrices for the diagonal blocks

= Global model is used to estimate the off-diagonal blocks
= Diagonal blocks of the global model differ from the
correlation matrices obtained from the local models

Local Models Global Model Integrated Model

USA

Japan —

Euro

" |ntegrated model is formed by “adjusting” the global model to

replicate the local models along the diagonal blocks
14
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Evaluating the Accuracy of
Correlation Forecasts
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Measuring Biases in Risk Forecasts

Bias statistic represents the ratio of forecast risk to realized risk

I — 1 Bi
z =" 5 B =std(z,) > B=—)B a5
" o, ! (2) N Zn: " Statistic

If the risk forecasts are exactly correct, the expected value of
the bias statistic is precisely equal to 1

If the risk forecasts are unbiased but noisy, the expected value
of the bias statistic is slightly greater than 1

Example: suppose we over-forecast volatility by 10% half of
the time, and under-forecast by 10% half the time

c(o]- 25 ) + 3 12

Typical bias statistic for unbiased risk forecasts is about 1.03

Bloomberg
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Factor-Pair Portfolios

Construct test portfolios capable of resolving minor differences
in volatility forecasts due to differences in correlations

Consider factor-pair portfolios
R=f +wf, > o°=0+Wo,+2pWo,0,

Solve for the weight w that maximizes the percentage of risk
due to the off-diagonal correlation

Solution is given by

w=x(o,/0,)

Portfolio volatility

o — \/EGl (1_ ‘p‘)1/2
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Description of Study

Sample period contains 713 weeks (03-Jan-01 to 27-Aug-14)
Model contains K=319 factors spanning nine equity blocks
Evaluate accuracy of correlations using factor-pair portfolios

Parameters used in Study:

Use T=200 weeks (equal weighted) as estimation window

For PCA, RMT, and blended matrices
= Use 1=0.25 for local blocks
= Use u;=0.10 for global block
For blended correlation matrices
= Assign 80% weight to the sample (w=0.8) for local blocks
= Assign 20% weight to the sample (w=0.2) for global blocks
Blending parameter selection criteria:

= Small deviation from the sample correlation
= Low realized volatility of optimized portfolios

Bloomberg



Correlation Scatterplots (Diagonal Blocks)

Local Blended provides a near “perfect fit” to the sample

= Eigen method and Local RMT exhibit systematic biases
Local RMT

Local Blended Correlation
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Local Blended
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Compute B-stats for all factor-pairs with mean
sample correlation above 0.40 (292 portfolios)

Eigen method and Local RMT exhibit biases
Sample and Local Blended are near ideal value

Local RMT Correlation
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Correlation Scatterplots (Off-Diagonal Blocks)

= Global Blended provides an excellent fit to the sample
= Time Series and Global RMT exhibit systematic biases

Glabal Blended Correl ation
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Sample Correlation Sample Correlation

Compute B-stats for all factor-pairs with mean
sample correlation above 0.50 (163 portfolios)

Time Series and Global RMT exhibit biases
Sample and Global Blended are near ideal value

Global RMT Correlation
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Evaluating the Quality of
Optimized Portfolios
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Quality of Optimized Portfolios

Portfolio optimization typically represents the most
demanding task for any risk model (the “acid” test)

Optimized portfolios have the maximum possible ex ante
information ratio

This implies that optimized unit-exposure portfolios have the
minimum volatility

Optimal portfolio (Model A)

Define the mean volatility ratio for Model A

1 ol
Vy=—» —

- Model with lowest volatility ratio wins
k O

Construct optimal portfolios for each of k=319 factors and
rebalance on a weekly basis (Jan-2001 to Aug-2014)

Bloomberg



Portfolio Optimization (Ex Ante)

= Decompose optimal portfolio into alpha and hedge portfolios:

Q'a
W = — =0+ h _ _ _ —
a) o a, h
" Hedge portfolio is uncorrelated with the a, h.
optimal portfolio - l
P P w=|a |+| A
h'Qw =0  Property 1 _ _
= The hedge portfolio has zero alpha o A
, p ¢ 2 | N ] N
= roper
Na=0 PErtY Alpha Hedge

= Hedge portfolio is negatively correlated
with the alpha portfolio

/
h'Qa <0 Property 3 Hedge portfolio reduces portfolio risk
0,0 without changing the expected return
94

23
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Geometry of Portfolio Optimization (Ex Ante)

Hedge portfolio is uncorrelated with optimal portfolio

—> GFZ, = O'é — Gﬁ Portfolio Variance

Let p ,, denote the predicted correlation between a and h

The magnitude of the correlation determines quality of hedge

Optimal position in hedge portfolio:
Gh — Ga ‘pah‘
Oy
Op
9
P P =C0S(6)
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Potential Pitfalls of Optimization

Optimization leads to superior ex ante performance, but is no
guarantee of improvement ex post

Estimation error within the covariance matrix represents a
potential pitfall in portfolio optimization

Estimation error in the correlation:

= Risk models “paint an overly rosy picture” of the correlation between
the alpha and hedge portfolios

Estimation error in the volatility:

= Risk models may misestimate the volatility of the hedge portfolio

Estimation error gives rise to several detrimental effects:
= Underestimation of risk of optimized portfolios
= Higher out-of-sample volatility of optimized portfolios
= Positive realized correlation between optimized and hedge portfolios

Bloomberg



Estimation Error in the Correlation

= Suppose that we estimate the volatility of
the hedge portfolio correctly

= However, suppose that we over-estimate
magnitude of correlation /

Side Effects:

1) Optimized portfolio
has high volatility
out-of-sample

2) Hedge portfolio is
positively correlated
with optimized
portfolio

26
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Biases in Correlation Forecasts (Within Block)

= Compute correlations between alpha and hedge portfolios
= All models systematically over-predicted correlations

Correlations

Model Ex Ante Ex Post
Sample -0.85 -0.65
Global PCA -0.62 -0.51
Local Blended -0.74 -0.62
Sample
0.0 0.0
?
-0.2 1 -0.2 1
S ety 2
g -0.4 1 :3:.::. .;-;g'.. . g -0.4 1
o oo 308 o o
g 061 o '..'.{.; E 0.6 1
) * 5
-0.8 1 _': 0.8 |
-1.0 . . . . 1.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
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Ex Ante Correlation

= Local blended hedge portfolio nearly as
effective as sample hedge portfolio (ex post)
= Bias was smaller for local blended model than
for sample, allowing better sizing of position
Global PCA (u;=0.10) Local Blended (p,=0.25, w=0.80)
0.0
7Y . T
o oo ® -0.2 1 0% ®
N % c o’
° ";'ﬁ _8 c. og :\"
S :_#: .
o E 0.6 05
o ) '.‘ .a
% °° -0.8 1 e .‘
'. ., ..‘u
& Qe
r r r r -1.0 L T T r r
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 -0.8 -0.6 -04 -0.2 0.0

Ex Ante Correlation

Ex Ante Correlation
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Objectives in Portfolio Optimization

Low out-of-sample volatility for optimized portfolios
= Measure using volatility ratio

Accurate risk forecasts for optimized portfolios

= Measure using bias stats or Q-stats

Efficient ex post allocation of the risk budget

= Realized risk should align with expected returns

Low factor leverage

— 1
L =2 X = L=22k
k t
Low factor turnover

— 1
TO, =Y | X = Xie| = TO:?ZTQ
k t
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Optimized Factor Portfolios (Diagonal Blocks)

= Compute averages over all 319 optimized factor portfolios
= Allow hedging using only factors within the same block

Optimized Factor Portfolios
Model B-stats Q-stats Vol Ratio Leverage Turnover
Sample 2.067 4.951 0.955 16.574 0.686
Local PCA 1.302 2.628 1.030 4.554 0.380
Global PCA 1.129 2.485 1.000 4.489 0.425
Local RMT 1.122 2.493 1.025 4.082 0.290
Global RMT 1.071 2.468 1.006 4.197 0.356
Time Series 1.009 2.471 1.072 2.583 0.088
Eigen-method 1.376 2.891 0.882 12.392 0.523
Local Blended 1.204 2.569 0.903 6.861 0.352

= Sample correlation underpredicted risk by factor of 2
= Sample and eigen-method had highest turnover and leverage
" Local blended model scored well across measures

29
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Optimized Factor Portfolios (Across Blocks)

= Compute averages over all 319 optimized factor portfolios
= Allow hedging using local factors from different blocks

Optimized Factor Portfolios
Model B-stats (Q-stats Vol Ratio Leverage Turnover
Global PCA 1.367 2.687 1.000 7.842 1.095
Global RMT 1.271 2.600 1.005 7.727 1.028
Time Series 1.101 2.491 1.030 3.734 0.193
Global Blended 1.370 2.681 0.977 9.707 0.864
Global PCA (Adjusted) 1.386 2.746 0.884 9.691 1.125
Global RMT (Adjusted) 1.339 2.690 0.876 9.539 0.998
Time Series (Adjusted) 1.406 2.813 0.911 11.717 0.700
Global Blended (Adjusted) 1.417 2.782 0.890 11.031 1.023

= Matrix adjustment replicates local models for diagonal blocks:
= Allows for more effective hedging using factors within the same block
= Reduces out-of-sample portfolio volatility

= Generally increases portfolio leverage and turnover
30
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Parameter Selection (US Equities)

= |everage/Turnover minimized by few PC and low sample weight

= STD is minimized by taking many PC and high sample weight

= Volatility is minimized at intermediate values

31

Leverage Turnover

Mu (local) w=0 w=0.20 w=0.40 w=0.60 w=0.80 w=1.00 Mu (local)] w=0 w=0.20 w=0.40 w=0.60 w=0.80 w=1.00
0.10 2.90 3.10 3.63 4.36 5.52 15.73 0.10 0.12 0.12 0.16 0.21 0.28 0.51
0.20 3.95 4.04 4.42 5.04 6.21 15.73 0.20 0.25 0.22 0.22 0.26 0.31 0.51
0.30 4.69 4.72 5.02 5.58 6.77 15.73 0.30 0.38 0.31 0.29 0.30 0.33 0.51
0.40 5.79 5.68 5.83 6.29 7.50 15.73 0.40 0.55 0.43 0.38 0.36 0.36 0.51
0.50 6.75 6.47 6.51 6.92 8.20 15.73 0.50 0.67 0.52 0.44 0.40 0.38 0.51
0.60 8.32 7.64 7.51 7.91 9.31 15.73 0.60 1.01 0.71 0.56 0.46 0.41 0.51
0.70 9.69 8.63 8.40 8.86 10.34 15.73 0.70 1.20 0.81 0.61 0.49 0.43 0.51
0.80 12.41 10.59 10.43 11.03 12.47 15.73 0.80 1.76 1.01 0.70 0.54 0.47 0.51
0.90 15.61 14.60 14.53 14.74 15.13 15.73 0.90 1.37 0.83 0.65 0.56 0.51 0.51
1.00 15.73 15.73 15.73 15.73 15.73 15.73 1.00 0.51 0.51 0.51 0.51 0.51 0.51

Volatility Ratio Standard Deviation

Mu (local) w=0 w=0.20 w=0.40 w=0.60 w=0.80 w=1.00 Mu (local)] w=0 w=0.20 w=0.40 w=0.60 w=0.80 w=1.00
0.10 1.087 1.020 0.989 0.971 0.957 1.118 0.10 0.083 0.067 0.050 0.033 0.017 0.000
0.20 1.040 1.004 0.984 0.970 0.953 1.118 0.20 0.054 0.043 0.032 0.021 0.011 0.000
0.30 1.045 1.010 0.989 0.971 0.948 1.118 0.30 0.045 0.036 0.027 0.018 0.009 0.000
0.40 1.078 1.034 1.004 0.977 0.948 1.118 0.40 0.035 0.028 0.021 0.014 0.007 0.000
0.50 1.119 1.057 1.015 0.979 0.949 1.118 0.50 0.029 0.023 0.017 0.012 0.006 0.000
0.60 1.199 1.096 1.032 0.984 0.958 1.118 0.60 0.022 0.017 0.013 0.009 0.004 0.000
0.70 1.289 1.133 1.044 0.989 0.973 1.118 0.70 0.016 0.013 0.010 0.007 0.003 0.000
0.80 1.438 1.157 1.051 1.011 1.021 1.118 0.80 0.010 0.008 0.006 0.004 0.002 0.000
0.90 1.376 1.157 1.103 1.091 1.097 1.118 0.90 0.005 0.004 0.003 0.002 0.001 0.000
1.00 1.118 1.118 1.118 1.118 1.118 1.118 1.00 0.000 0.000 0.000 0.000 0.000 0.000




Volatility Ratio

= Create a Local PCA and Blended model for every local block

" For Local PCA, vary number of principal components ()
" For Local Blended model, choose p, =0.2 and vary w

32

Local PCA exhibited local minimum, but sample had even lower

out-of-sample volatility

Across block uses global PCA with local model as the target

Local PCA Model

14414
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Local Blended (u=0.2)

1A
\\ —e— \Within Block
— -4 —  Across Block
0.0 0.2 0.4 0.6 0.8 1.0

Weight of Sample

Bloomberg



Bias Statistics

= Local PCA model vastly under-predicts risk as the number of
principal components approaches the maximum (i.e., u—>1)

= Sample makes more accurate risk forecasts than the Local PCA

= Even small blending (w=0.8) improves accuracy of risk forecasts

33

model with many factors

for optimized portfolios

Bias Statistics

Local PCA Model
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Factor Leverage

= Compute mean factor leverage across factors and time
]
L=> X = L=22L
” T4

" For Local PCA, leverage increases sharply as u—>1

= For blended model, even small mixing (w=0.8) is sufficient to
greatly reduce mean factor leverage

Local PCA Model s Blended Model (u=0.2)
25 -
16 1
% 20 A1 —e— Within Block % 14 —e— Within Block /
9 — - —  Across Block E — =2 = Across Block /
% 15 - o
- 4
S -
g 5 .
3 o
L 51 L‘E 4
2 -
0 0

0 02 04 06 08 10 00 02 04 06 08 10

34 u (Fraction of PC) Weight of Sample
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Factor Turnover

= Compute mean factor turnover

— 1
TO, =Y | X = Xie| = TO:?ZTQ
k t

" For Local PCA, turnover rises sharply with increasing u

= Blended model reduced factor turnover considerably

Local PCA Model

2.5

—e— Within Block a
— -2 —  Across Block A \
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Ranking the Candidate Models
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Ranking the Models within Local Markets

Use two measures for forecast accuracy

Use two measures for quality of optimized portfolios

Convert into z-scores (positive scores are above average)

Form composite z-score (equally weight four components)

Factor-Pairs Optimized Factors | Composite
Model Q-stats Std Vol Ratio  Turnover | z-score
Sample 0.536 1.104 0.451 -1.722 0.184
Local PCA 0.254 -0.057 -0.706 0.042 -0.234
Global PCA 0.635 0.222 -0.243 -0.213 0.200
Local RMT 0.022 0.051 -0.630 0.563 0.003
Global RMT -0.002 0.006 -0.327 0.181 -0.071
Time Series -2.405 -2.228 -1.336 1.728 -2.118
Eigen-method 0.443 0.029 1.559 -0.782 0.624
Local Blended 0.517 0.872 1.233 0.203 1.411

New Bloomberg methodology performed above average on
all four measures and earned the highest composite score

Bloomberg



Ranking the Models across Multiple Markets

= New Bloomberg methodology

= Scored above average on three of four measures

= Produced highest composite z-score

Factor-Pairs Optimized Factors |[Composite
Model Q-stats Std Vol Ratio  Turnover | z-score
Global PCA 0.767 0.474 -0.850 -0.702 -0.174
Global RMT -1.998 0.334 -0.933 -0.485 -1.720
Time Series -1.008 -2.146 -1.327 2.220 -1.261
Global Blended 0.820 0.717 -0.489 0.045 0.610
Global PCA (Adjusted) 0.415 0.400 1.000 -0.800 0.566
Global RMT (Adjusted) 0.463 0.405 1.125 -0.386 0.897
Time Series (Adjusted) -0.044 -0.869 0.568 0.577 0.130
Global Blended (Adjusted) 0.585 0.684 0.905 -0.468 0.952

= Unified methodology applied throughout estimation process
facilitates implementation and comprehension of model

38
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MAC2 versus MAC1 Comparison



Bloomberg MAC2 and MAC1 Models

= MAC1I refers to the first-generation Bloomberg MAC model
= Computes diagonal blocks using RMT method with shrinkage
= Computes off-diagonal blocks using the time-series method

= For equities, “core” factors taken from global equity model
= e.g., Japan autos is regressed on Japan factor and global auto factor

= For other blocks, “core” factors are weighted average of local factors
= e.g., Core factor for oil commodities is weighted average of Brent and WTI “shift”

= Apply integration matrix to recover the diagonal blocks

= MAC2 refers to the new Bloomberg MAC model:
= Uses blended methodology for both diagonal and off-diagonal blocks
= Applies integration matrix to recover local models on diagonal blocks

= MAC1 and MAC2 models use EWMA with same HL parameters:

= 26 weeks for volatilities
= 52 weeks for correlations

40

Bloomberg



41

Diagonal Equity Blocks

Make scatterplots of estimated correlations versus sample

Example: US equity factors versus US equity factors

1.0 1

MAC1 Correlation

1.0 1

0.5 1
0.0 -

0.5 -

MAC1

Sample Correlation

MAC2 Correlation

1.0 1
0.5
0.0
-0.5

1.0 1
1.0

MAC2

Tr 1 rrrr1rrrrr1rrrrr

-0.5 0.0 0.5

Sample Correlation

MAC?2 estimates closely mimic the sample correlation

1.0

MAC1 estimates exhibit more scatter and some biases

27-Aug-2014
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Off-Diagonal Equity Blocks

= Make scatterplots of estimated correlations versus sample
= Example: US equity factors versus Japan equity factors

1.0 -

MAC1 Correlation

-1.0 A

MAC1

0.5 -
0.0 -

0.5 1

Sample Correlation

MAC2 Correlation

1.0 1
0.5
0.0
0.5

-1.0 A

MAC2

Sample Correlation

= MAC2 estimates closely mimic the sample correlation
MAC1 estimates exhibit more scatter and some biases

42

27-Aug-2014
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US Equity versus US Fixed Income

MAC?2 estimates closely mimic the sample correlation

MAC1 correlations exhibit considerable biases

MAC1

1.0 1

0.5
0.0 1 . =

0.5

MAC1 Correlation

'11D-l L L B LI B LI B B |

-1.0  -05 0.0 0.5

Sample Correlation

1.0

MAC2 Correlation

MAC2

Sample Correlation

Results suggest that the time-series method may not be

effective at fully explaining correlations across asset classes

27-Aug-2014
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Cross Asset-Class Correlations versus Time

Consider the correlation between the US energy factor (equity)
and the crude-oil commodity factor (Brent shift)

Plot predicted and realized correlations (52w HL)

Blended approach captures
the observed relationship
very closely

Time-series method
systematically under-
predicts correlation

Suggests missing factors in
time-series approach
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Scenario Analysis

= What is the expected impact of a 20% drop in crude oil on the

45

return of the S&P 5007
- Z XkPE [ fk]
k

Shocked variables are
propagated to other factors

(1] 2% R

Differences in correlations
lead to differences in the
expected returns of the
propagated variables
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Scenario Analysis Attribution

MAC1 predicts drop of 2.36% for S&P 500
MAC2 predicts drop of 3.61% for S&P 500

MAC2 betas were generally larger due to higher correlations

MAC1 Model

Factor Exposure Beta Propagation Contribution
US Market 1.000 0.120 -2.40% -2.40%
Energy 0.073 0.246 -4.92% -0.36%
Utilities 0.036 -0.091 1.81% 0.07%
Other Factors 000 000 000 0.33%
Total -2.36%
MAC2 Model

Factor Exposure Beta Propagation Contribution
US Market 1.000 0.192 -3.83% -3.83%
Oil Exploration 0.053 0.473 -9.46% -0.50%
Utilities 0.036 -0.181 3.60% 0.13%
Other Factors 000 000 ooo 0.59%
Total -3.61%

Bloomberg
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Optimized Factor Portfolios (Across Blocks)

For each of the 319 local equity factors, compute the volatility
ratio between MAC2 and MAC1 for optimized factor portfolios

MAC2 60

1 o
k
V=—
K;G&\AA01 .

40 ~

MAC2 Model produced
lower volatility in more than
80 percent of portfolios

30 -

Count

The average volatility ratio 20 1
was 0.89

Similar results hold for
within-block optimizations 0 -

10 A

05 06 0.7 08 09 10 11 1.2

Sample Period: 30-Mar-2005 to 27-Aug-2014 Volatility Ratio
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Summary

Introduction of second-generation Bloomberg model (MAC2)

Adopted “blank-slate” approach to select the best model
among a broad set of candidate models

New methodology:
= Two-parameter model uses blended correlations at all estimation levels
= Parameters are empirically determined
= Generally, larger blocks assign smaller weight to sample correlation
= |ntegration matrix is applied to recover local models on diagonal blocks

New model closely mimics the sample correlation even across
different asset classes (e.g., equity versus fixed income)

New model guarantees full-rank covariance matrix to provide
reliable forecasts for portfolio construction

Bloomberg
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Sample Correlation Matrix

Sample period contains 713 weeks (01-03-01 to 8-27-14)
Model contains k=319 local factors (for nine equity blocks)
Compute sample covariance matrix (F,) over T=200 weeks

ij:% t (fjt_f_i)(fkt_f_k)

Let S, be a diagonal matrix of factor volatilities from F,

Co = 581F0561

Sample Correlation Matrix

C, provides an unbiased estimate of pairwise correlation
However, C, is rank deficient (119 zero eigenvalues)

C, falsely implies the existence of “riskless portfolios”

C, is not suitable for portfolio optimization purposes

Bloomberg
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PCA Correlation Matrices (Global and Local)

Transform the sample correlation matrix to diagonal basis

D,=U'C,U  Columns of U are eigenvectors of C,

Keep only the first J components, where J<T and J<K

~ ~ A~ A~ ~

C=UDU’ U is a KxJ matrix

Compute the “idiosyncratic” variance
A, =1-—diag, (C) — C,=UDU'+A | PCA matrix

Scale PCA correlation matrix with official factor volatilities

F, =SC.S ‘ PCA covariance matrix

Global PCA refers to PCA technique on all local factors (K=319)
Local PCA refers to applying PCA on the diagonal blocks

Bloomberg



Random Matrix Theory (Global and Local)

= Consider the diagonal matrix D:
= First J elements are the largest eigenvalues of sample correlation matrix
= Remaining K-J elements are the average of remaining eigenvalues

= Rotate back to the original basis

C=UDU’ Note: diagonal elements not equal to 1

= Scale rows and columns to recover 1 along the diagonals

A /o

C,=S'CS* where S, =4C,

= Scale RMT correlation matrix with official factor volatilities

F, =SC.S RMT covariance matrix

= Global RMT refers to RMT technique on all local factors (K=319)

= Local RMT refers to applying RMT on the diagonal blocks
52
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Time-Series Methods (Full Factor Set)

Assume local factors are driven by a small set of global factors
fisTxK, gisTxJ, BisJxK, eis TxK

local factors global factors  factor loadings purely local

f:gB+e‘

For equities, the full set of explanatory variables is given by
the factor returns of a global equity multi-factor model

Factor loadings are estimated by time-series regression
/ -1 /
B=(g'g) ¢f
Define factor covariance matrices

g'g e'e .
G=—=<2 E=—/ D=d E
T-1 T-1 |ag( )

Local factor correlation matrix

Frs =B'GB+D  — | Cps =SiiFeS (T;rlln“esseet;ies

Bloomberg
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Time-Series Methods (Partial Factor Set)

Partial-set method mirrors full-set method, except each local
factor is regressed on a small subset of global factors

For instance, the Japan Automobile factor might only be
regressed on two global factors: Japan and Automobiles

This results in a sparse factor loadings matrix, B
Local factor covariance matrix is given by

F..=B'GB+D

The correlation matrix is given by

Cps = SpeFosSpe Time Series (Partial Set)

Selection of relevant global factors:
= May contain a significant subjective element
= Omission of important factors may lead to misestimation of risk

Bloomberg
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Eigen-Adjusted Correlation Matrices (Local)

Menchero, Wang, and Orr (2012) showed that eigenvalues of
sample covariance matrix are systematically biased

D,=U'C,U  Columns of U are eigenvectors of C,

Let DO denote the diagonal matrix of de-biased eigenvalues
Perform reverse rotation to original basis:

C = UDOU’ Note: diagonal elements not equal to 1

Scale rows and columns to recover 1 along the diagonals

CE —SICS™ Eigen-adjusted correlation matrix

Eigen-adjusted method is only applicable for the local blocks

Menchero, Wang, and Orr. Improving Risk Forecasts for Optimized Portfolios,
Financial Analysts Journal, May/June 2012, pp. 40-50

Bloomberg
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Blended Correlation Matrices (Global and Local)

Ledoit and Wolf (2003) showed that blending the sample
covariance matrix with a factor model yielded optimized
portfolios with lower out-of-sample volatility

We blend the sample correlation matrix (using weight w) with
the PCA correlation matrix (using J factors)

Specify number of PCA factors by parameter 1, where J=uK
Two-parameter model for correlation matrix:

Cy(1,Ww)=wCy+(1-w)C,(u) | Blended Matrix

Blending can be applied at either global or local level

Ledoit and Wolf. Improved Estimation of the Covariance matrix of Stock Returns,
Journal of Empirical Finance, December 2003, pp. 603-621

Bloomberg
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Adjusted Correlation Matrices

Local portfolio managers (e.g., US equities) want the “best”
correlation matrix, known as the target correlation matrix

Factor correlation matrix may be adjusted so that diagonal
blocks agree with the target correlation matrix

T

C:21 C22

|: Cll C:12

Target
correlation
matrix

Define adjustment matrix A

A =

[ ~1/2A-1/2
C11 C11

0

0

12 A~-12
sz sz |

é _ C11 C12
_C21 C:22 |
— | C, =ACA’

Diagonal blocks now agree with C.,
Off-diagonal blocks given by: CA(2,1) — Clz’zzé;;’zémél‘lﬂzci’f

Estimated
correlation
matrix

Adjusted
matrix
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