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MOTIVATION 
 
 
Estimates of expected future long-term returns are crucial inputs in empirical asset pricing:  

• Wealth a portfolio is expected to generate over the long term: 

 Pension funds, Social security retirement policy 

• Wealth needed at a future horizon:  

 Use expected future long-term return to back-out investment needed today.  

• Input to asset allocation decision: optimal mix of risky and risk-free assets for the long run.  

Current portfolio theory  

• Very sophisticated models of time varying opportunity:  

 Doubts on the applicability of complex intertemporal models (Garlappi & Uppal) 

•  Effect of parameter uncertainty on forecast and optimal decision not discussed as often.  
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Fact (i.i.d returns) 

 
If the arithmetic mean one-period return of a portfolio is:    1 + E(R)  
The long-term H-period expected return is     [1 + E(R)]H 

 
 
• But we use estimates of the mean return!  
 

What is the best estimate of the H-period expected returns? 
 
 Recall: we want to estimate:  E[(1+R)H] 

 
Compound the arithmetic average, or the geometric average, or something else? 
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Arithmetic average: 
 
Estimate  1+E(R) by (for example) the sample average of 1+Rt  
 
Then compound $1 today is expected to grow to (! ! !)H = 1.08560  = $ 154 
 
Appeal: 

Sample average is the Best estimator of one-period E(R) under i.i.d assumption 
 Maximum likelihood justification for compounding at !. 
 
  
 

Geometric average:  
 
 The rate of return per period G so that (1+G)T =  PT/P1    
 
   Log(1+G) = 1/T log(PT/P1)  the sample mean  of log-returns 
 

  (1+G)H  = 1.0760 = $ 58 
 
 Appeal:  Powerful intuition for compounding, it’s what we actually earned in the sample! 
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• For log-normal returns  log(1+R) ~ N(µµ , !!) 
 
    (1+!)   estimates exp(µµ  + 0.5 !!2) 

 
    Log (1+G) estimates µµ   => 1+G estimates exp(µ) 
 
    (1+!) = (1+G) exp(0.5 !2) 
 
 ! = 20%   ! 1.02 
 ! = 30%   ! 1.046    
 
• Arithmetic average always larger than the geometric no matter the distribution. 

 
 

So…. what do People do? 
 
 
• Ibbotson SBBI yearbook: Simulates future values with arithmetic returns 
 
• Academics  favor arithmetic average even recently 
 
• Practitioners lean toward geometric average. Jac
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Other Related Problem: 
 
• Recent market downturns (2001, 2008) brings back the question of the equity premium: 
 

Fama and French (2002)  
 

! The one-period equity risk premium, a.k.a. the mean return in excess of the risk-
free rate, is less than implied by the post-1926 average returns.  

 
! Estimation error in mean returns large even for long sample sizes 

 
! They talk about “ What is the best ! ? ”   

 
! …  not how to use the best ! to compute long-term expected returns. 

 
• What we do here (1+!) applies beyond the standard sample average 
 
  It applies to any quantity that estimates the one-period return with error. 
 
• What we do not discuss:  
 
  Predicting short or medium term returns - Market or Sector timing. 
  What the best estimate of one-period average return is. 
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Biases of Arithmetic and Geometric Methods, Unbiased Forecast 

1. Estimating a compound return: 
 
 rt = log(1 + Rt)  ~ N( µ, !2),  i.i.d. 

VH  =  $1 " exp(µH + !#
i=1

H
 $t+i ),  $ ~ i.i.d. N(0,1)   (1) 

E(VH) = e(µ + "!2)H  =  [1 + E(R)]H       (2) 

Ibbotson etc… uses (2) with an estimate of E(R) 
 
• We ignore estimation error in ! for now.  
 µ: Only the calendar span can increase precision of estimation  

!: Sampling frequency increases precision of estimation 
 

High  frequency data available, estimation of ! is a second order effect.  Merton (1980) 
 
• Jensen’s Inequality: E(!!) = E((1+!)H) > [1 + E(!)]H   =  [1 + E(R)]H = E(VH).  (3)=> 

Arithmetic method biased upward:  !! biased upward if ! is unbiased 
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2 Our version of the arithmetic estimator based on log-normality 

 
First approach:     estimate E(R)  substitute in [1 + E(R)]H  A1 = ( 1 + ! )H    
 
 
Second approach: estimate µ   substitute in e(µ + "!2)H    A2 = e(µ^  + "!2)H  
 
 
Both are MLE estimators of E(VH), not exactly equal in small sample. 
 
 
We will use A2 for analytics:
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3 Bias of Arithmetic and Geometric Estimators 
 
 

• µ̂  = 1T #
i = 1

T
 ln(1 + R!i )  =  1T 

%
&
&
'

(
)
)
*

µT + ! #
i = 1

T
 $!i   . 

 

Sample mean is unbiased, with standard error !/ T.   

µ̂  = µ + # !/ T  ,  # ~ N(0,1)            (4) 

 

• Arithmetic estimator: 

A = e(µ^  + " !2)H = e(µ + #!/ T  + " !2)H    = e(µ  + " !2)H e(#  !/ T )H  

E(A)  = e(µ  + "!2)H E[e#!H/ T ]    =  E(VH)              e!!!2H2/T  (5) 

            Bias  
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• Geometric estimator 
 

E(G)  =  E(eµ^ H)  =  E[e(µ + #!/ T )H ]  =  eµH   + "!2H2/T  

       =  E(VH)   e! !!2(H2/T ++  H)    (6) 

               Bias 

 

 Biased:  upward if  H> T 

   downward if H < T 

 
• Does it matter? 
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Table 1:  
Bias induced by forecasting final portfolio value using arithmetic average return of portfolio over a sample 
period.  Ratio of forecast to true expected value of cumulative return.  [!: annual standard deviation. 
 

Sample period = 75 years 

  Horizon (years)   

  10 20 30 40  
!     

0.15 1.015 1.062 1.145 1.271 
0.2 1.027 1.113 1.271 1.532 
0.25 1.043 1.181 1.455 1.948 
0.3 1.062 1.271 1.716 2.612 
    

Sample period = 30 years 

  Horizon (years)   
 10 20   30   40  
 !        
0.15 1.038 1.162 1.401   1.822 
0.2 1.069 1.306 1.822   2.906 
0.25 1.110 1.517 2.554   5.294 
0.3 1.162 1.822 3.857 11.023 
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4 Unbiased estimator 
 
 
• Simple inspection of (5) or (6):    Compounding at  µ̂ + " !2(1 + H/T)   removes bias. 
 
 
 
• Formally: for sample size T, horizon H, Construct an unbiased estimator in the family 
 

  C = e(µµ^  + ! k !!2)H      (7) 

 Family nests  G (k = 0)  and A (k = 1).   

 

• Unbiased estimator U:  solve for the value kU that so that E(C) = E(VH).   

     kU = 1 – H/T       (8) 

 
• Bias vanishes iff  H<<T  ( T/H , - ) 
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Estimates of compounding rates and future portfolio values. 
 
A, G, U:  Annual compounding rates with arithmetic and geometric average G,  and unbiased estimator (H = 40 
years).   
 
V(A), V(G), V(U): Forecasts of future portfolio values, initial $1 invested for H = 40 years 
 
                  Sample estimates          Annual growth rates     Future portfolio value  
Country/Index     T Begin End µµ̂         "̂       A   G     U    V(A)   V(G)  V(U) 
 
Canada/TSE 52 1950 2001 6.6     14.9  8.0 6.8 7.1 21.8 14.0 15.5 
 
France/SBF250 52 1950 2001 8.7     22.2  11.8 9.1 9.7 87.0 32.5 40.8 
 
Germany/DAX 52 1950 2001 8.0    22.8  11.2 8.3 9.0 69.4 24.5 31.2 
 
UK/FTAS 52 1950 2001 6.4    24.7  9.9 6.6 8.3 43.8 12.9 24.2 
 
Japan/Nikkei 52 1950 2001 8.8    24.1  12.4 9.2 9.9 107.9 33.8 44.2 
 
Hong Kongb 28 1973 2001 10.7  30.7  16.7 11.3 9.0 475.8 72.2 31.0 
 
MSCI/$Emg Mkt 14     1988 2001 8.2    24.2  11.8 8.5 2.5 85.7 26.6 2.7 

 
 

• Example:   1.08 = exp(0.066 + " * 0.1492) for 40 years :  $ 21.8
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• Remedy: If you use a sample average, get more data ! 
 

Estimates of compounding rates and future portfolio values 
 
    Sample estimates     Annual growth rates       Future portfolio value 
Country/Index            T Begin End µµ̂  "̂      A   G     U    V(A)   V(G)  V(U) 
Canada/TSE  78 1914 2001 4.8 16.7  6.4 4.9 5.6 11.9  6.8 9.0 
Canada/TSE  52 1950 2001 6.6 14.9 8.0 6.8 7.1 21.8 14.0 15.5 
 
France/SBF250 145 1857 2001 5.1 19.7 7.3 5.2  6.7 16.7 7.7 13.5 
France/SBF250   82 1920 2001 8.5 24.7 12.2  8.9 10.6 101.5 30.0 56.0 
France/SBF250   52 1950 2001 8.7 22.2 11.8 9.1 9.7 87.0 32.5 40.8 
 
Germany/DAX 145 1857 2001 1.9 32.2 7.3 1.9  5.8 17.0 2.1 9.6 
Germany/DAX   82 1920 2001 5.5 37.0 13.1 5.7 9.4 139.5 9.0 36.7 
Germany/DAX   52 1950 2001 8.0 22.8 11.2 8.3 9.0 69.4 24.5 31.2 
 
UK/FTAS 201 1801 2001 2.4 15.6 3.7 2.4 3.4 4.2 2.6 3.9 
UK/FTAS   82 1920 2001 5.5 20.0 7.8 5.7 6.7 20.1 9.0 13.6 
UK/FTAS   52 1950 2001 6.4 24.7 9.9 6.6 8.3 43.8 12.9 24.2 
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It does not get better:  

Longer calendar sample means are uniformly lower 
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EFFICIENT ESTIMATION 
 
• Unbiasedness is not a goal per se. 
 
o Used by statisticians to reduce possibly unmanageable estimation problems 

 
o Can lead to inferior estimators, (Sample mean vs. Shrinkage) 

 
 
 
• Better to minimize a loss function – measure of average distance to the true parameter 
 

 
 Mean squared error:  E[( .* - .)2]  = E([.* - E(.*)]2)   +  [E(.*) -.]2 

 
               Variance  Squared Bias 
 
 
 
     Can be seen as a generalization of the Maximum Likelihood for small sample 
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What is the minimum MSE estimator for E(VH) 
 

• C = e(µµ^  + ! k !!2)H 

• MSE(C) = E[C ++   E(VH) ]2    

=  E(eµ̂H +  "k!2H  +  eµH +  "!2H )2 

        = E(e2µ̂H + k!2H + e2µH + !2H + 2eµ̂H+ "k!2H +µH + "!2H)  

  Now Substitute µ̂ = µ + # !/ T, evaluate, .. 

 

 MSE(C) = e 2µH + 2!2H2/T+k!2H  + e 2µH + !2H    - 2 e 2µH + "!2H2/T + "k!2H + "!2H 

 

• Find k that minimizes C : 

 

   kM = 1 – 3 H/T       (10) 
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• Stronger downward penalty than the unbiased estimator ! 
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Figure 1: Long-Term wealth forecasts and annual compound rates for A, G, U, M. µµ̂  = 0.1, !!  = 0.2.  
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Robustness to Distributional Assumptions 
 
 
• Negative long term autocorrelation in returns 
 

Summers (1986), Poterba and Summers (1988), and Fama and French (1988)  etc.. 
 

 
• Effect on the analysis: 
 

Autocorrelation enters through the sum of the H future returns and the sumt of the T past returns used 
to estimate µ. 

 
 
• Easily corrected 
 
Correlation matrix C: TxT for past returns, HxH for future returns  
Vector of ones of lengths T and H: i 
Variance of a sum of past and future returns:   !2i!Ci  instead of T!2 or H!2  
 

• The future:  E(VH) in (2), exponential term becomes H(µ + "  i!CH i !2/H).  

• The past:  µ̂  in (14):   µ + # ! i!CTi/T.  

• Compute   FT = i!CT i/T  and  FH = i!CH i/H,  
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Then 

kU = 1 –  HT  " FT
FH

         (21) 

kM = 1 –  3H
T  " FT

FH
       (22) 

 
Other non-i.i.d specifications easily extend the ratio FT / FH. 
 
 
Figure 3: estimated MA(4) on annual SP500 log-returns from 26-01.  
 
 
• Forecasts are barely affected by the correction. 
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Figure 3: Effect of autocorrelation on estimators U and M, µµ̂  = 0.1, !!  = 0.2, T = 75,  MA(4) on annual S&P 
returns: / = (-0.16, -0.02, -0.16, -0.08) estimated on 1926-2001. 
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• Heteroskedasticity?  
 

Little problem for large H: Volatility reverts to  unconditional variance above a year 

Increased Kurtosis increases the estimation uncertainty of !. 
 
• Alternative estimation of µµ  
 

Fama-French (2002): the dividend discount model helps reduce the variance of the estimator of  E(R). 
 
Just convert the variance reduction into an equivalent increase in T 

 
• !!  is estimated as well 
 

Induces non-normality in the predictive distribution of log-returns?  
Induces a variance inflation in the predictive distribution 0/(0+2). 

 
Very large degrees of freedom if higher frequency of returns is used 

 
 
Geometric estimator is robust, it doesn’t use an estimate of !! 
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OPTIMAL LONG-TERM ALLOCATION WITH ESTIMATION ERROR 
 
 
Basic Merton framework: No estimation error 

1 = µ + " !2 

r0 the risk-free return.  

Power utility function and relative risk aversion ",  

Investor maximizes the expectation of her utility of final wealth:  

U(VH)  =  
VH

1 + "

1 + "     =  1
1 + "  exp[(1 + ") ln(VH)]             (11) 

w: risky portfolio   and   (1 + w): risk free asset 

 

• Portfolio value is then log-normal with parameters (assume continuous rebalancing): 

ln(VH) ~ N(µH, #2
H)  2  N[(r0 + w($ + r0) + " w2!2H, Hw2!2]         (12) 
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• Expected utility is then:  

 E[U(VH)] = 1
1 + 3  exp{(1 + 3) H [r0 + w($ + r0) + " w2!2 + "(1 + ")w2!2]}  (13) 

 

Maximize (13) with respect to w => Merton optimal allocation w* = 
$$  ++  r0

""!!2 .  

 

• Independent of the horizon for i.i.d. returns, .. well known 

But….. 

• Conventional advice is to increase allocation with the horizon.  

• Largely motivated in the literature via predictability in expected returns, e.g., Garcia et al. (2000), 

Wachter (2000) and others. 

• Conclusions most always assume knowledge of the parameters of the return distribution.   
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2 Long-term allocation with estimation error 

• Optimal asset allocation is affected by estimation uncertainty in 1, more so as H/T grows.  

 Bawa, Brown, and Klein (1979) and others model it in one-period framework.  

 Not very dramatic for a short horizon.  

 

We need to incorporate the uncertainty in 1 in the above asset allocation: 

• Practice of substituting a point estimate in the optimal allocation in place of the unknown 1 is incorrect.  

 

• The investor, has a distribution for 1 that represents its uncertainty. a sampling distribution or, for a 

Bayesian,  a posterior distribution.  

=> E[U(VH)] in (13) is random,  as a non-linear function of a random variable $. 
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• Basic decision theory: 

The correct expected utility to maximize, follows from first integrating $ out of equation (13).  

In Bayesian jargon, this integration produces the expected utility of wealth given the data,  

E[U(VH | D)] 

…  to be then optimized by the investor.  

  

• Specifically: 

E[U(VH) | D]  =  45E[U(VH)/$]  p($ | D) d$        (14) 

 

• With diffuse priors, the posterior distribution of $ is N($̂ , !2/T). 

Jac
quier

  Q
WAFA

FE
W D

ec
. 2

013



 

 13 

  
• Integrate (14): 

 E[U(VH | D)] =  1
1 + "  exp{(1 + ")H[r0 + w($̂ + r0) + " w2!2 + "(1 + ")w2!2(1 + HT)]}  (15) 

 

Note: 

1) $ in (13) is replaced with $̂ ,  

2) New term in (15) reflects the variance inflation due to the estimation of $. 

  

• Finally maximize (15) for the optimal asset allocation: 

     w* = $$̂  !!  r0

!!2[""(1 + HT  ) ++  HT  ]
         (16) 

 

• H<<T:   Back to Merton.   Jac
quier
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     w* = $$̂  !!  r0

!!2[""(1 + HT  ) ++  HT  ]
    

• " > 1: . risky asset allocation decreased relative to known 1 case  

. The more so the greater the ratio H/T.   

. Contrary to the common advice to invest more in stocks for longer horizons.   

. Happens even if returns are unpredictable.  

• Log-utility, ""  = 1.  

Linear in $:  estimation uncertainty and the horizon H do not affect the location of the optimum.  

 

• Less than Log-utility investors:  0 < 3 < 1 

 Actually derive benefit from the estimation error! 
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Figure 4: Joint effects of horizon and estimation error on optimal allocation, µµ̂  = 0.1, !!  = 0.2 Jac
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3 Estimator consistent with Optimal Asset Allocation 

 

• Asset allocation with diffuse prior:

w∗ =
α̂ − r0

σ2γ
[
1 + H

T − H
Tγ

] ≡ α∗ − r0

σ2γ
,

α∗: The estimate of annualized expected return corrected for estimation risk, by a change of
measure consistent with the investor’s risk aversion.

• Ignore r0 without loss of generality: Then

α∗ =
α̂

1 + H
T (1 − 1

γ )

We can rewrite α∗ as α̂ − kσ2

2
H
T to compare with the classical estimators.

Unbiased α̂ − σ2

2
H
T

Minimum MSE α̂ − 3σ2

2
H
T

Utility α̂ −
[

α̂
γ

γ−1+H
T

]
H
T

• Loss function consistent with investor’s utility.
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Contrast with the “statistical estimator 

 

• Prevents α∗ < 0 when µ̂ > 0.
α∗ → 0+ when H

T → ∞

• Magnitude of the penalty:

For conventional µ, σ, γ, and reasonable H/T , the estimation risk penalty is closer to the MMSE
than to the unbiased estimator.
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Figure 5:  Annualized Optimal estimates consistent with Power Utility vs. H/T.   3=2,4. 
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